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The Plasma Capacitor in a Magnetic Field t

by
F. W, CRAWFORD, T. D. MANTEI AND .J..A. TATARONIS

Institute for Plasma Research
Stanford University
Stanford, California

N66-373725” R

This paper extends previous work on the impedance of a parallel
plate capacitor, filled with warm plasma, to take account of a static
magnetic field. Computations are presented for parallel plate and
coaxial cylinder geometries, and indicate series of resonances occurring
at, and between, the electron cyclotron frequency harmonics. It is
suggested that if the theoretical results were confirmed experimentally,
plasma admittance measurements would form the basis of a simple and
powerful diagnostic technique for measuring plasma parameters such as

electron density and temperature in the laboratory and in the ionosphere,

Aot

t This work was supported by the National Science Foundation. The paper
is based on a talk presented at the 7th Symposium on Engineering Aspects
of MHD, Princeton, N, J., March 1966.
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Parallel plate and coaxial cylinder plasma capacitor geometries,

Fig, 1,




g 1 INTRODUCTION

Several previous analyses have concerned the impedance of a parallel
plate capacitor containing plasma, in the absence of a magnetic field
(Wolff 1956, 1958; Vandenplas and Gould 1961; Weissglas 1962; Hall 1963;
Shure 1964). The object of this paper is to extend the theory to situa-
tions where a static magnetic field is present, parallel to the metallic
boundaries. The studies are restricted to geometries in which the wave
equation is separable, This implies & simple set of normal modes, and
the occurrence of series of resonance frequencies. Specifically, the
two cases to be examined are parallel plates, and infinitely long
coaxiai cylinders, as shown in fig. 1.

In these problems, equivalent plasma permittivity concepts play an
important role, For example, for a capacitor of arbitrary geometry

filled with homogeneous cold plasma, the impedance, Z , at frequency

® , is simply (Zo/ep) , where ZO is the impedance with free space

as the dielectric, the equivalent plasma permittivity, ep is given by
El - (a$2/w2):] , wp is the electron plasma frequency, and the static
magnetic field strength, B , is zero., Of far more practical and

theoretical interest are cases in which the electron temperature, Te ,
is non-zero, The equivalent plasma permittivity is then dispersive, i.e.
its variation depends not only on w , but also on the wave-number, k
(Stix 1962) .,

The case Te #0 , B =0 has been approached from several differ-
ent directions, and an excellent tutorial paper by Hall (1963) describes
and contrasts these. Basically, the treatment may be either microscopic,
in which case it is founded directly on the Boltzmann equation, or it
may employ macroscopic equations derived by taking moments of the
Boltzmann equation. To take a particular case, the latter approach
yields the following mathematically equivalent solutions for the

normalized unit area impedance, Z , of a parallel plate plasma

capacitor,
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Where zo(w) = (l/iwco) ; c0 = (e0/2L) ; 2L is the plate separation;
1

vT = (7K1é/me) /2 ; 7 1s the adiabatic compression constant for the

electron gas (=3, 2 and 5/3 in 1,2, and 3 dimensions); kn = (nrt/ZL) ,

and k is obtained from,
p
0=1 ) . (3)

It is clear that resonances occur when kL = (EZr + 1) n/é] (r=0,1,...
i.e. when (ZL/)‘D) [(wz/wpz) - 1]1/2 = (2r + 1)n , where
RD = (v /a> ) is approximately the electronic Debye length,

[znTé/me) /2/u$] . Since,in practice, the quantity (2L/XD) must be
a large number so as to satisfy the definition of a plasma, the implica-
tion is that a very closely spaced series of resonances should be
observed for o > wp

Equation (1) has been criticized on the grounds that it ignores
collisionless damping, an effect which may be caused by electrons in the
unperturbed velocity distribution, fo(v) , whose transit time between
the plates is an odd number of half-periods of the applied signal, and
which are consequently continuously accelerated by the electric field
(Weissglas 1962; Hall 1963; Shure 1964). This phenomenon can only be

described correctly by the microscopic theory. A summation similar to




that of eqn. (1) is again obtained but with,

o VI /3V)

e (k ,®) = 1 + j‘——————dv. (4)
p n P _u wz—knz v

The residues at the poles in the integrand introduce loss analogous
to Landau damping (Stix 1962), and would certainly make observation of
the resonances difficult, even if a sufficiently homogeneous plasma
could be realized. 1In the laboratory, however, inhomogeneities change
the phenomena considerably: The separation between the resonances increases,
and they are observable as the well-known ''Tonks-Dattner' series of
peaks. Several detailed numerical analysis of these have been carried
out successfully using both macroscopic and microscopic theories (Parker
et al, 1964; Crawford 1964; Leavens 1965; Harker 1965).

The foregoing discussion serves to explain the motivation for
extending the microscopic theory to the case with Te #0 , B #0 .

In this situation, the resonant modes of the system are longitudinal
cyclotron harmonic waves which do not suffer collisionless damping
(Bernstein 1958). They have the additional feature that their propaga-
tion characteristics tend to be influenced less by inhomogeneity of the
plasma than by that in B , which can easily be controlled experimentally.
The implication is that a more readily realizable experimental test of
the theory may be possible for the warm magnetoplasma dielectric. The
relevant theory, and some computations, will be presented in § 2, and
discussed briefly in § 3. It should be emphasized at the outset that an
exact description of the plasma behavior, particularly near boundaries,
would be extremely complicated. Many assumptions will be made, and
although the final results are plausible physically, their degree of

validity requires to be established by experiment.




§ 2 THEORY
2.1 Parallel Plate Capacitor

The total conventional current density, is continuous and consists

JO s

and the displacement current

of the plasma convection current density, Jp s

density, Jd . In the plasma region, -L < x <L , we have

-3 (@) = 3 (x,0) + ive E(x,0) . (5)

Use of the equivalent permittivity forms derived for an infinite plasma is
usually justified by imaging, i,e. setting up an infinite series of parallel
plates with period ZL . Successive plates are driven in antiphase so that
the total current density has a rectangular waveform in space (Ha11,1963).
This procedure is formally equivalent to using the finite sine transform

(Irving and Mullineux 1959),

+L 1 é&
f(kn) = I f(x) cos k x dx f(x) = ;T ZZJ f(kn) cos k x . (6)
-L n=1
Application of this to eqn (5) yields,
- Jo(kn,w) = Jp(kn,a)) + iw GOE(kn,w) = i € eJ-v(mkn,a))E(lfn,w) ., (D

where we have introduced the equivalent plasma permittivity component
perpendicular to the magnetic field, %L.(kn,w) (Stix 1962). Taking colli-
sions into account approximately (Tataronis and Crawford 1965), this is given

by
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Here Vv is the electron/neutral momentum transfer collision frequency;

kn = (k R)2 ;@ is the electron cyclotron frequency, and
n c

R = [Q{T /m )l/zﬂb ] is the Larmor radius of an electron with thermal
e e c

energy. Equation (8) is appropriate to a Maxwellian electron velocity

distribution, Ion motions have been neglected. For the expression to

be valid, it is required that R << L

Rearranging eqn (7), and inverting the transform, yields

[ee]
B x ) - 1 E: Jo(kn,w) cos k x o
’ 1(.0€OL EJ_ (kn’w) ?
n=1
which may be integrated to give the potential,
* nx
4 ‘. Jo(kn,w) sin (—2—)
V((D) =  —— L 3y (10)
iwen n e (k_ ®)
n=1 -L n)
Applying eqn., (6) we have,
2 . nmx
JO(kn’(D) = * sin (—2—) , (11)
n
which may be substituted in eqn. (10) to yield, finally,
g\ 1
Z(Ww) = — —- s (12)
e w
n odd © ?L(kn’ )

As in the previous work described in § 1, it is implicit in the analysis
leading to this result that a boundary condition of specular reflection

of the electrons has been assumed.




Two points may be observed directly from eqn., (12). First, there
will be a series of plasma resonances occurring at the cyclotron
harmonics, where the normalized impedance goes to zero and, second, that
wherever the condition gL(kn,w) = 0 1is satisfied, there are geometric
resonances and the impedance will be infinite. These are just the
frequencies for which cyclotron harmonic waves propagate. The resonances
occur due to a coupling between the forced field and standing cyclotron
harmonic waves. For frequencies and wave numbers which do not satisfy
the dispersion relation, the fields established within the plasma may be
understood as the superposition of an infinite number of longitudinal
waves. As the operating frequency is made more nearly equal to a
resonance frequency, a single wave component will dominate the summation.
Precisely at resonance, the coupling is optimum between the forcing field
and a particular wave component,

It will be remarked that eqn. (12) shows no collisionless damping.
This is so because the electrons gyrate in the magnetic field, returning
to the same position every cyclotron period. There is no group traveling
backwards and forwards between the plates, as was the case for zero
magnetic field. For propagation at angles other than exact perpendicu-
larity to the magnetic field, very strong cyclotron and Landau damping
effects are to be expected.

The impedance described by eqn. (12) can be expressed as an equiva-
lent circuit. It consists of an infinite set of impedances in series,; a

typical member of which is

Z 1 [: 8 (13)
pn ~  joC 2 2 )
0 L (kn,w)

This can be further broken down as shown in fig., 2.

2,2 Coaxial Cylinder Capacitor

The analysis follows similar lines to that of the previous section

except that the appropriate transform is now the finite Hankel transform
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Fig., 2. Equivalent circuit representation of normalized, unit area

impedance, Z(w) , of a parallel plate capacitor filled

with a warm magnetoplasma.




(Sneddon 1951) defined by,

9 oo 2
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where the function BO (knr) is given by,
B0 (knr) = J0 (knr) NO (kna) - JO (kna) N0 (knr) . (15)

J0 and No are the zero-order Bessel functions of the first and second
kind, respectively. In this section, kn is defined by the roots of

k ,b) =
B0 ( n’ ) 0

In place of eqn. (5), we have for the current/unit length, 1

0 ?
the expression,
I,(0
- = J_ (r,w) + iw eOE(r,w) ) (16)
2nr P
Applying the transformation; solving for E (kn,w) ; inverting the trans-

form, and integrating to obtain the potential, exactly as before, yields

the following expression for the normalized impedance,

% b }2
. nz jz j; B0 (knr) d (knr) an
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where for this geometry C0 = [?Jreo/ln(b/ai] , and elﬂkn,w) is again

given by eqn. (8). It may easily be shown that if a - o b~ »

3 ’

and (b - a) = 2L , eqn (17) reduces correctly to the parallel plate

case of eqn. (12).

2.3 Computations

For the computations, it is convenient to put the permittivity into

the integral form (Crawford 1965),

iv wpz b1¢ sinl:(w‘ i\))¢/w;]sin¢ exp[ —an c°52(¢/2)]d¢
e (k ,w) =1+ (1~ —)—r
1% (i w wcz o sin[ka>— iv) ﬂﬁwcj

(18)

This has been used in conjunction with eqns. (2) and (17) to obtain the
normalized admittance plots for parallel plate geometry shown in
figs. 3a and .b, In the figures, the shaded zones mark regions where the
density of resonance peaks was very high and detailed computations were
not carried out, Admittance has been chosen for this representation,
rather than impedance since an experiment would probably be carried out
with V constant, The admittance plots then indicate the rf current
variation to be expected.

Figure: 3(a) shows clearly the effect of increasing (aizﬁwcz)

The number of resonances in each passband increases rapidly with this
parameter. It will be noted that the resonances are extremely sharp.
The implication is that effects such as magnetic field inhomogeneity or
collisions would tend to damp the resonances strongly. Figure 3(b)
demonstrates this clearly for a relatively low collision frequency.
Only the resonances in the first passband remain well marked.

In any experimental verification of the theory, it would be more
usual to maintain ® constant while the discharge current and magnetic
field were varied. This implies that plots of the admittance variation
with (az/w) for different values of (a%z/wcz) would be obtained. The
computed forms of these are shown in figs. 4 and 5, and again indicate the

powerful influence of collisions in damping the resonances,

- 10 -
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§ 3 DISCUSSION

The most serious objection to the analysis in this paper, and to
all previous plasma capacitance theories, is the assumption of a specu-
larly reflecting boundary condition, This assumption is as easy to
criticize as it is difficult to improve upon, but is frequently used
because of the tractability it lends to the equations, and because it
appeals strongly to physical intuition, It is clear, however, that
near the boundary plasma density gradients and sheath effects, finite
Larmor.radius effects, etc,, would all have to be taken into account in
any exact treatment, It is probably better to approach the problem
empirically, and indeed one of the strongest motives for making experi-
mental measurements on plasma capacitors to check the theory in this
paper is to verify whether its use of the simple specular reflection

condition leads to valid predictions or not.

Assuming that our analysis is adequate, we note that the theoreti-
cal impedance solutions indicate that the warm plasma capacitor in a
magnetic field should be rich in resonances, Since these can be well
spaced, and are not subject to collisionless damping, there is a some-
what greater hope of success in attempting to find them experimentally
than there is in the absence of a magnetic field. Difficulties in
carrying out such an experiment would result first from any misalign-
ment of the electrodes, since the wavelengths are very short., Second,

in view of the high"Q" of the resonances, magnetic field inhomogeneities

and collisions would exert smoothing effects, It is not difficult exper-

imentally to obtain values of (V/w) NlO—lL , so that the latter should

not be a deciding factor, Now that space probes have made the ionos-
phere readily accessible to experiment, it might be possible to carry
out measurements on large volumes of uniform, almost collisionless,

warm plasma, in a highly uniform magnetic field,

It should be noted that the standing wave resonances in the two
geometries discussed in this paper differ from the plasma resonances
occurring at the upper hybrid frequency and harmonics of the cyclotron

frequency which have already been observed in laboratory plasma

- 17 ~



experiments using parallel wire probes (Crawford et al 1964; Harp 1965
a, b; Crawford and Weiss 1966). Mathematically, this geometry is non-
resonant. The driven probe simply excites a propagating cyclotron
harmonic wave which spreads with a cylindrical wave front, The receiv-
ing probe measures the total potential resulting from interference
between the propagating wave and the directly coupled capacitive signal,
There are interference peaks, but no resonance effects, These results
do establish the validity of eqn.(8), however, for the infinite plasma
permittivity description employed in our analysis, Since the geometric
resonances occurring for €, (kn,w) = 0 effectively give discrete
points on the cyclotron harmonic wave dispersion curves, it should be
possible to trace out these curves from observations of the resonances

for various capacitor dimensions,
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